Have been trying to set it up for hours now. Nothing works.

  • Latest version does not seem to have winutils support, and using it causes errors when using some important methods. (EDIT: this is likely wrong, and the winutils stuff that I have should probably be fine.)
  • Older versions require to be built with Maven. However, that just gives me a PluginExecutionException.

I need to do this ASAP, preferably within the next 3 hours.

I have nowhere else to ask for help, it seems, especially considering that reddit-logo suspended an account I set up specifically for asking questions after I edited a relevant post.

Highly doubt that anybody will be able to help me.

EDIT2: the issue has, thankfully, been resolved. I was using Python 3.12, and switched to 3.11.8. That made the problem go away.

    • Tomorrow_Farewell [any, they/them]@hexbear.netOP
      link
      fedilink
      English
      arrow-up
      3
      ·
      edit-2
      4 months ago
      • pip install pyspark and installing the latest version of Apache Spark leads to errors when calling pyspark.sql.DataFrame.show() methods of DataFrame objects.
      • pip install pyspark and installing an older version of Apache Spark, i.e. having a version mismatch between PySpark and Apache Spark, leads to errors even when instantiating a SparkSession.
      • pip install pyspark==3.3.4 previously led to an error - the system was unable to build wheels for the package. Now, it seems to install that way, but behaves the same as in the previous case.
      • Trying to build the 3.3.4 PySpark package manually with ./build/mvn using Bash from the appropriate directory led to Caused by: org.apache.maven.plugin.PluginExecutionException: Execution scala-compile-first of goal net.alchim31.maven:scala-maven-plu gin:4.4.0:compile failed.

      Running this code after having installed this stuff as in case 3:

      from pyspark.sql import SparkSession
      from datetime import datetime, date
      import pandas as pd
      from pyspark.sql import Row
      
      spark = SparkSession.builder.getOrCreate()
      
      df = spark.createDataFrame([
          Row(a=1, b=2., c='string1', d=date(2000, 1, 1), e=datetime(2000, 1, 1, 12, 0)),
          Row(a=2, b=3., c='string2', d=date(2000, 2, 1), e=datetime(2000, 1, 2, 12, 0)),
          Row(a=4, b=5., c='string3', d=date(2000, 3, 1), e=datetime(2000, 1, 3, 12, 0))
      ])
      df.printSchema()
      df.show()
      

      leads to this:

      Setting default log level to "WARN".
      To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
      Traceback (most recent call last):
        File "[python file path]", line 6, in <module>
          spark = SparkSession.builder.getOrCreate()
                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
        File "[python file path]", line 269, in getOrCreate
          sc = SparkContext.getOrCreate(sparkConf)
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
        File "[python file path]", line 483, in getOrCreate
          SparkContext(conf=conf or SparkConf())
        File "[python file path]", line 197, in __init__
          self._do_init(
        File "[python file path]", line 282, in _do_init
          self._jsc = jsc or self._initialize_context(self._conf._jconf)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
        File "[python file path]", line 402, in _initialize_context
          return self._jvm.JavaSparkContext(jconf)
                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
        File "[python file path]", line 1585, in __call__
          return_value = get_return_value(
                         ^^^^^^^^^^^^^^^^^
        File "[python file path]", line 326, in get_return_value
          raise Py4JJavaError(
      py4j.protocol.Py4JJavaError: An error occurred while calling None.org.apache.spark.api.java.JavaSparkContext.
      : java.lang.ExceptionInInitializerError
      	at org.apache.spark.unsafe.array.ByteArrayMethods.<clinit>(ByteArrayMethods.java:56)
      	at org.apache.spark.memory.MemoryManager.defaultPageSizeBytes$lzycompute(MemoryManager.scala:264)
      	at org.apache.spark.memory.MemoryManager.defaultPageSizeBytes(MemoryManager.scala:254)
      	at org.apache.spark.memory.MemoryManager.$anonfun$pageSizeBytes$1(MemoryManager.scala:273)
      	at scala.runtime.java8.JFunction0$mcJ$sp.apply(JFunction0$mcJ$sp.java:23)
      	at scala.Option.getOrElse(Option.scala:189)
      	at org.apache.spark.memory.MemoryManager.<init>(MemoryManager.scala:273)
      	at org.apache.spark.memory.UnifiedMemoryManager.<init>(UnifiedMemoryManager.scala:58)
      	at org.apache.spark.memory.UnifiedMemoryManager$.apply(UnifiedMemoryManager.scala:207)
      	at org.apache.spark.SparkEnv$.create(SparkEnv.scala:320)
      	at org.apache.spark.SparkEnv$.createDriverEnv(SparkEnv.scala:194)
      	at org.apache.spark.SparkContext.createSparkEnv(SparkContext.scala:279)
      	at org.apache.spark.SparkContext.<init>(SparkContext.scala:464)
      	at org.apache.spark.api.java.JavaSparkContext.<init>(JavaSparkContext.scala:58)
      	at java.base/jdk.internal.reflect.DirectConstructorHandleAccessor.newInstance(DirectConstructorHandleAccessor.java:62)
      	at java.base/java.lang.reflect.Constructor.newInstanceWithCaller(Constructor.java:502)
      	at java.base/java.lang.reflect.Constructor.newInstance(Constructor.java:486)
      	at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:247)
      	at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
      	at py4j.Gateway.invoke(Gateway.java:238)
      	at py4j.commands.ConstructorCommand.invokeConstructor(ConstructorCommand.java:80)
      	at py4j.commands.ConstructorCommand.execute(ConstructorCommand.java:69)
      	at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
      	at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
      	at java.base/java.lang.Thread.run(Thread.java:1570)
      Caused by: java.lang.IllegalStateException: java.lang.NoSuchMethodException: java.nio.DirectByteBuffer.<init>(long,int)
      	at org.apache.spark.unsafe.Platform.<clinit>(Platform.java:113)
      	... 25 more
      Caused by: java.lang.NoSuchMethodException: java.nio.DirectByteBuffer.<init>(long,int)
      	at java.base/java.lang.Class.getConstructor0(Class.java:3784)
      	at java.base/java.lang.Class.getDeclaredConstructor(Class.java:2955)
      	at org.apache.spark.unsafe.Platform.<clinit>(Platform.java:71)
      	... 25 more
      
      SUCCESS: The process with PID 21224 (child process of PID 9020) has been terminated.
      SUCCESS: The process with PID 9020 (child process of PID 15684) has been terminated.
      SUCCESS: The process with PID 15684 (child process of PID 4980) has been terminated.
      
      Process finished with exit code 1
      

      System environmental variables JAVA_HOME, HADOOP_HOME, SPARK_HOME are configured. The relevant binary directories are included in the Path system environmental variable.
      PYTHON_SPARK is set to python.

      EDIT: Great, and now Maven can’t even attempt to build the package and throws the error

      Error occurred during initialization of VM
      Could not reserve enough space for 2097152KB object heap
      

      Just great.

    • Tomorrow_Farewell [any, they/them]@hexbear.netOP
      link
      fedilink
      English
      arrow-up
      1
      ·
      4 months ago

      Just in case, if I install the library the first way, for the same piece of code the logs start with this:

      Setting default log level to "WARN".
      To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
      root
       |-- a: long (nullable = true)
       |-- b: double (nullable = true)
       |-- c: string (nullable = true)
       |-- d: date (nullable = true)
       |-- e: timestamp (nullable = true)
      
      24/07/22 19:04:46 ERROR Executor: Exception in task 0.0 in stage 0.0 (TID 0)
      org.apache.spark.SparkException: Python worker exited unexpectedly (crashed)
      	at org.apache.spark.api.python.BasePythonRunner$ReaderIterator$$anonfun$1.applyOrElse(PythonRunner.scala:612)
      	at org.apache.spark.api.python.BasePythonRunner$ReaderIterator$$anonfun$1.applyOrElse(PythonRunner.scala:594)
      	at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:38)
      	at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:789)
      	at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:766)
      	at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:525)
      	at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
      	at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:491)
      	at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
      	at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
      	at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCo*removed*tage1.processNext(Unknown Source)
      	at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
      	at org.apache.spark.sql.execution.WholeStageCodegenEvaluatorFactory$WholeStageCodegenPartitionEvaluator$$anon$1.hasNext(WholeStageCodegenEvaluatorFactory.scala:43)
      	at org.apache.spark.sql.execution.SparkPlan.$anonfun$getByteArrayRdd$1(SparkPlan.scala:388)
      	at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:893)
      	at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:893)
      	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
      	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:367)
      	at org.apache.spark.rdd.RDD.iterator(RDD.scala:331)
      	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:93)
      	at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:166)
      	at org.apache.spark.scheduler.Task.run(Task.scala:141)
      	at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$4(Executor.scala:620)
      	at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally(SparkErrorUtils.scala:64)
      	at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally$(SparkErrorUtils.scala:61)
      	at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:94)
      	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:623)
      	at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136)
      	at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635)
      	at java.base/java.lang.Thread.run(Thread.java:842)
      Caused by: java.io.EOFException
      	at java.base/java.io.DataInputStream.readInt(DataInputStream.java:398)
      	at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:774)
      	... 26 more