• brucethemoose@lemmy.world
    link
    fedilink
    English
    arrow-up
    3
    ·
    edit-2
    9 hours ago

    Fair. True.

    If your workload/test fits in 24GB, that’s already a “solved” problem. If it fits in 48GB, it’s possibly solved with your institution’s workstation or whatever.

    But if it takes 80GB, as many projects seem to require these days since the A100 is such a common baseline, you are likely using very expensive cloud GPU time. I really love the idea of being able to tinker with a “full” 80GB+ workload (even having to deal with ROCM) without having to pay per hour.

    • KingRandomGuy@lemmy.world
      link
      fedilink
      English
      arrow-up
      2
      ·
      2 hours ago

      Yeah, I agree that it does help for some approaches that do require a lot of VRAM. If you’re not on a tight schedule, this type of thing might be good enough to just get a model running.

      I don’t personally do anything that large; even the diffusion methods I’ve developed were able to fit on a 24GB card, but I know with the hype in multimodal stuff, VRAM needs can be pretty high.

      I suspect this machine will be popular with hobbyists for running really large open weight LLMs.

      • brucethemoose@lemmy.world
        link
        fedilink
        English
        arrow-up
        1
        ·
        edit-2
        35 minutes ago

        I suspect this machine will be popular with hobbyists for running really large open weight LLMs.

        Yeah.

        It will probably spur a lot of development! I’ve seen a lot of bs=1 speedup “hacks” shelved because GPUs are fast enough, and memory efficiency is the real bottleneck. But suddenly all these devs are going to have a 48GB-96GB pool that’s significantly slower than a 3090. And multimodal becomes much more viable.

        Not to speak of better ROCM compatibility. AMD should have done this ages ago…

    • wise_pancake@lemmy.ca
      link
      fedilink
      English
      arrow-up
      2
      ·
      6 hours ago

      This is my use case exactly.

      I do a lot of analysis locally, this is more than enough for my experiments and research. 64 to 96gb VRAM is exactly the window I need. There are analyses I’ve had to let run for 2 or 3 days and dealing with that on the cloud is annoying.

      Plus this will replace GH Copilot for me. It’ll run voice models. I have diffusion model experiments I plan to run but are totally inaccessible locally to me (not just image models). I’ve got workloads that take 2 or 3 days at 100% CPU/GPU that are annoying to run in the cloud.

      This basically frees me from paying for any cloud stuff in my personal life for the foreseeable future. I’m trying to localize as much as I can.

      I’ve got tons of ideas I’m free to try out risk free on this machine, and it’s the most affordable “entry level” solution I’ve seen.

      • brucethemoose@lemmy.world
        link
        fedilink
        English
        arrow-up
        2
        ·
        edit-2
        5 hours ago

        And even better, “testing” it. Maybe I’m sloppy, but I have failed runs, errors, hacks, hours of “tinkering,” optimizing, or just trying to get something to launch that feels like an utter waste of an A100 mostly sitting idle… Hence I often don’t do it at all.

        One thing you should keep in mind is that the compute power of this thing is not like an A/H100, especially if you get a big slowdown with rocm, so what could take you 2-3 days could take over a week. It’d be nice if framework sold a cheap MI300A, but… shrug.

        • wise_pancake@lemmy.ca
          link
          fedilink
          English
          arrow-up
          3
          ·
          4 hours ago

          I don’t mind that it’s slower, I would rather wait than waste time on machines measured in multiple dollars per hour.

          I’ve never locked up an A100 that long, I’ve used them for full work days and was glad I wasn’t paying directly.